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Abstract. Theoretical phase diagrams for betaine calcium chloride dihydrate are constructed.
A phenomenological approach is used. Expressions for the thermodynamic potentials of different
phases and for the boundaries between these phases are given in an explicit form. The
theoretical temperature–pressure phase diagram is plotted and is found to be in agreement with
the experimental diagram. The approximations and assumptions made in the construction of the
diagrams are discussed.

1. Introduction

Betaine calcium chloride dihydrate (BCCD),(CH3)3NCH2COO·CaCl2·2H2O, is a well
studied crystal with an incommensurate phase (IC phase). The number of observed com-
mensurate phases (Cm/l phases, with different values of the dimensionless wavenumber
q = qm/l = m/l) is very large. The experimental temperature–pressure (T –P ) phase
diagram, which was obtained by means of dielectric measurements [1–4], is shown
schematically in figure 1.

The phase diagram has also been investigated by ultrasound techniques over a restricted
range ofT andP in [5]. On the basis of a study of elastic neutron scattering in partially
deuterated BCCD, aP–T diagram has been plotted [6]. Both of these latter diagrams are
closely related to the diagram shown in figure 1.

The space group D16
2h of the initial C phase is usually chosen in the standard setting

abc, i.e. Pnma. The vector of modulation of the IC phase iskz = qc∗. The following
Cm/l phases are observed in figure 1: the C0/1 phase withq = 0 (i.e. equitranslational with
the C phase), which has a spontaneous polarization along they-axis (its space group is
C9

2v (Pn21a)); and Cm/l phases withqm/l = m/l = 2/7, 1/4, 1/5, 1/6, 1/7 and otherqm/l
which are not labelled in figure 1 (see [1–4] and references therein). Possible space groups
of the Cm/l phases are given below in table 1.

The aim of this paper is to construct theoretical phase diagrams for BCCD on the basis
of a phenomenological approach. First we construct a phase diagram in dimensionless
variablesD andA, which are combinations of coefficients of thermodynamic potentials
(see below). Assuming a linear dependence ofD andA on T andP , we construct theT –P
phase diagram and compare it with the experimental diagram.

† Permanent address: Shubnikov Institute of Crystallography of the Russian Academy of Sciences, Moscow
117333, Russia.
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Figure 1. The experimentalT –P phase diagram for BCCD [1–4].

2. Thermodynamic potentials

We assume, as is indeed the case, that all of the phases observed in BCCD are determined
by the same soft optical branch of the normal vibration spectrum of the crystal (the language
of lattice dynamics is useful for the cases of displacive phase transitions and order–disorder
ones).

The first problem is that of obtaining the thermodynamic potentials for all of the possible
phases in BCCD. For this purpose we combine two different phenomenological approaches
to the description of IC phase transitions. Having in mind further developments of the
theory, we write the potentials out taking into consideration all external forces which can
influence the Cm/l phases and hence the phase diagrams substantially. These external
forces are various components of the electric field vector,Ei , and of the mechanical stress
tensor,σij .

In the first approach, the order parameter of the C–C0/1 phase transition is used as
an order parameter for the C–IC–C0/1 transition sequence, except that it is dependent
on space coordinates. Since the C–C0/1 transition is a proper ferroelectric one, i.e. the
nondegenerate mode of the soft optical branch in the centre of the Brillouin zone contributes
to the polarizationPy , we can choose the componentPy(z) as an order parameter. The
thermodynamic potential then takes the form [7, 8]

8 =
∫
8(z) dz

/∫
dz

8(z) = αP 2
y +

2

3
βP 4

y −
δ

c∗2

(
∂Py

∂z

)2

+ κ

c∗4

(
∂2Py

∂z2

)2

− PyEy.
(2.1)

In a single-harmonic approximation,

Py = p +
√

2ρ cosqc∗z (2.2)

(p = 0 atEy = 0) the potential of the IC phase according to equation (2.1) takes the form

8IC = α(q)ρ2+ βρ4+ αp2+ 2

3
βp4+ 4βρ2p2− pEy (2.3)

where

α(q) = α − δq2+ κq4 (2.4)



The temperature–pressure phase diagram for BCCD 1805

Table 1. The space groups of all of the possible commensurate phases associated with a soft
optical branch with the wavevectorkz = qc∗ of the space groupPnma (D16

2h) of BCCD. The
mode withq = 0 of this branch transforms according to the representation B2u of the point
group D2h of the initial phase of the crystal.

q = qm/l = m/l: 0/1 m+/l− m−/l− m−/l+

B2u(y) C9
2v Pn21a c1 C9

2v Pn21a y D4
2 P212121 xyz C5

2h P121/c1 zx

c2 C5
2h P21/n11 yz C5

2h P1121/a xy C5
2v P21ca x

c3 C2
s Pn11 z C2

2 P1121 z C2
s P1c1 z

and it is necessary to assumeβ > 0, κ > 0, and alsoδ > 0.
For the potentials of the C phase and the C0/1 phase we obtain from equation (2.1)

8C = αP 2
y +

2

3
βP 4

y − PyEy. (2.5)

It is impossible to obtain potentials for the Cm/l phases in the first approach. Therefore
we use the second approach, namely a phenomenological description of a devil’s staircase
[9]. The dependence of the elastic coefficientα of the soft optical branch on the wavenumber
q can be approximated by the simplest function (2.4). It has a maximum in the centre and a
minimum at an arbitrary point of the Brillouin zone. Since the soft optical branch is doubly
degenerate, i.e.α(q) = α(−q), the order parameter in the potential, which corresponds to
an arbitraryq-value, has two components. The componentsη and ξ can be considered
as amplitudes of two modes with wavenumbersq and−q, which belong to this branch.
It is convenient to use the polar system of coordinatesη = R cosϕ, ξ = R sinϕ. There
exist two independent invariants composed of the componentsη andξ : R2 (isotropic) and
R2l cos 2lϕ (anisotropic in theη, ξ -space). Three mixed invariants also exist in our case:
Q1ρ

l coslϕ, Q2ρ
l sinlϕ, andQ3ρ

2l sin 2lϕ, which, along with the componentsη andξ of
the order parameter, contain macroscopic quantities (tensor componentsQ1,2,3) in linear
form. These transform according to representations of the point group D2h; for details see
reference [10].

Then the thermodynamic potential can be represented in the form

8 = α(q)R2+ βR4− α̃′2lR2l cos 2lϕ − a1Q1R
l coslϕ − a2Q2R

l sinlϕ

− a3Q3R
2l sin 2lϕ + κ1Q

2
1+ κ2Q

2
2+ κ3Q

2
3−Q1F1−Q2F2−Q3F3 (2.6)

whereF1, F2, andF3 are components of the external forces conjugate toQ1,Q2, andQ3.
The components of the electric field vector,Ei , or the stress tensor,σij , as well asF1,2,3

andPi or ui,j as well asQ1,2,3 are of interest from the experimental point of view. The
particular meaning ofQ1,2,3 and hence ofF1,2,3 depends on theq = m/l considered, and
on whetherm and l are even or odd. This can be seen from table 1 [10, 11].

Table 1 gives the space groups for all possible Cm/l phases, which correspond to the
soft branch of the normal vibration spectrum of BCCD under consideration. The first
column gives the representation of the point group D2h (mmm), according to which the
transition from the C phase to the C0/1 phase occurs, and in parentheses the lower-rank tensor
component which transforms according to this representation; finally the space group of the
C0/1 phase is given. The three columns that follow give the space groups of three possible
Cm/l phases: c1 (Q1 6= 0), c2 (Q2 6= 0), and c3 (Q1,2,3 6= 0) for all qm/l = m/l (m+, l+ are
even integers andm−, l− are odd integers), and also lower-rank tensor components, which
transform according to the same representations asQ1, Q2, andQ3. Note that the phase
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c3, if it exists, occupies a small volume in the phase space in comparison with the phases
c1, c2, and hence will be rather unlikely to be observed in experiment (see [11]).

We require that potential (2.6) leads to the same expression, equations (2.3), (2.4), for
the IC phase as in the first approach. For irrational values ofq the coefficients̃α′2l anda1,2,3

are identically equal to zero: the terms with these coefficients are not invariants, because
they do not satisfy the condition of translational symmetry of the crystal along thez-axis.
Setting α̃′2l = a1 = a2 = a3 = 0, we obtain (2.3) and (2.4) from (2.6), if we add to (2.6)
the following terms:

18 = αP 2
y +

2

3
βP 4

y + 4βR2P 2
y − PyEy. (2.7)

Note that the termsκαQ2
α −QαFα (α = 1, 2, 3) were not taken into account in (2.3), apart

from the term−PyEy , and thatρ and p are changed toR andPy in (2.6) and (2.7) in
comparison with (2.3). Strictly speaking, the termsκαQ2

α − QαFα must be added to the
potentials (2.3) and (2.5), while the change of variables is not essential.Py is a uniform
component of the polarization vector, as in (2.5), which is proportional to the amplitude of
the mode withq = 0 belonging to the soft branch considered. The last term in (2.7) must
be added only if it is absent among the terms−QαFα in (2.6). In (2.6) and (2.7) we take
into account only the necessary invariants of the lowest powers inR and also all external
forces, which are linearly dependent on the order parameter. Invariants of higher powers in
R do not change the results substantially.

Thus, using two different phenomenological approaches for the description of IC phase
transitions, and requiring that they must provide precisely the same expressions for the
potential of the IC phase, we have obtained the thermodynamic potentials for all of the
possible phases in BCCD.

3. Potentials for concreteqm/l-values

For definiteness, we rewrite potentials (2.6) and (2.7) for eachqm/l = m/l, giving the
explicit meaning forQ1,Q2 andF1, F2, and renaming some coefficients. We omitQ3 and
F3 since the fieldF3 does not influence the phase diagrams significantly.

For the Cm−/l+ phases withqm−/l+ = m−/l+, we obtain

8m−/l+ = α(qm−/l+)R2+ βR4− α̃′2lR2l cos 2lϕ + αP 2
y + 2

3βP
4
y + 4βR2P 2

y

− b5uzxR
l coslϕ − b1PxR

l sinlϕ

+ c5u
2
zx + c1P

2
x − PyEy − uzxσzx − PxEx. (3.1)

For the Cm−/l− phases withqm−/l− = m−/l− we get

8m−/l− = α(qm−/l−)R2+ βR4− α̃′2lR2l cos 2lϕ + αP 2
y + 2

3βP
4
y + 4βR2P 2

y

− b6uxyR
l sinlϕ + c6u

2
xy − PyEy − uxyσxy. (3.2)

Here we omit the mixed invariants with the componentsPxuyz, Pyuzx , andPzuxy , since the
associated forcesExσyz, Eyσzx , andEzσxy are not important from the experimental point
of view.

For the Cm+/l− phases withqm+/l− = m+/l−, we obtain

8m+/l− = α(qm+/l−)R2+ βR4− α̃′2lR2l cos 2lϕ + αP 2
y + 2

3βP
4
y + 4βR2P 2

y

− b2PyR
l coslϕ − b4uyzR

l sinlϕ + c4u
2
yz − PyEy − uyzσyz. (3.3)
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In (3.1)–(3.3) we have included those components ofEi and σij which could be of
interest in experimental investigations of their influence on the Cm/l phases. However, in
the present context they are not needed.

4. Equilibrium values of the potentials at zero fields

We consider the thermodynamic potentials in the absence of fields, i.e.Ei = 0, σij = 0.
Minimizing the IC phase potential (2.3), (2.4) with respect toq we obtain the equilibrium
value ofq:

q2 = δ/2κ ≡ q2
0 α0 ≡ δ2/4κ = κq4

0 (4.1)

where the notationα0 is introduced, which is used in the following. Substituting (4.1) into
(2.4), we obtainα(q0) = α − α0. Minimizing now (2.3) with respect toρ, we arrive at the
expression

8IC = −(α − α0)
2/4β. (4.2)

Minimizing potential (2.5) with respect toPy we obtain

8C = 0 80/1 = −3α2/8β. (4.3)

Minimizing potentials (2.6) and (2.7) for the Cm/l phases with respect toQ1,Q2, and
ϕ, we obtain as a result for the possible phases c1 and c2 the solutions

c1: cos 2lϕ = 1,Q1 = ±(a1/2κ1)R
l,Q2 = 0

c2: cos 2lϕ = −1,Q1 = 0,Q2 = ±(a2/2κ2)R
l

(4.4)

provided thatκ1,2 > 0. The phase c3 can be neglected as explained above. Substituting
(4.4) into (2.6) and (2.7), we arrive at the expressions

8m/l = α(qm/l)R2+ βR4− |α′2l|R2l α′2l = α̃′2l + a2
1/8κ1− a2

2/8κ2. (4.5)

The phases c1 and c2 are stable atα′2l > 0, andα′2l < 0, respectively.
Minimizing (4.5) with respect toR and using the condition for weak anisotropy, we

obtain

8m/l = −α
2(qm/l)

4β

[
1+ |α

′
2l|
β

(−α(qm/l)
2β

)l−2
]
. (4.6)

The condition for weak anisotropy consists in the fact that the anisotropic, i.e.ϕ-dependent,
invariants in potential (2.6) are small in comparison with the isotropic invariant, which is
independent ofϕ. As can be seen from (4.5) and (4.6), this condition has the form

|α′2l|R2l

2βR4
= |α

′
2l|

2β

(−α(qm/l)
2β

)l−2

� 1. (4.7)

The largerl, the better (4.7) is fulfilled. Forl = 2, condition (4.7) is not fulfilled. However,
for 81/2 we can obtain an explicit expression neglecting this condition. It is not reproduced
here, since in BCCD the C1/2 phase is not observed.

Expressions (4.4)–(4.7) are obviously applicable to potentials (3.1)–(3.3), provided
that the coefficients and variables are changed. However, the case of the phase c1 for
potential (3.3) requires additional consideration. In this caseκ1 has to be replaced by
κ1 = α + 4βR2 = 2α0 − α, as follows from (3.3) under condition (4.7). This value is
comparatively small. It is even possible to write out for the quantitya2

1/8κ1 a separate
condition for weak anisotropy (different to (4.7)), but we shall not make use of this
possibility, since the quantitya1 has no independent meaning in the absence of the fieldF1.



1808 D G Sannikov and G Schaack

A phenomenological approach for accounting for the temperature sequence of phase
transitions in BCCD was used in [12] (see also [13], where theP -dependence of the
coefficients in the thermodynamic potential was taken into account). This approach differs
from the one used in the present study and in [9] by the simplification of the term
α′2lR

2l = βeff R
4, whereβeff is assumed to be constant (we have replaced the notation

of [12] and [13] by the notation used in this paper), and also by the use of the excess term
P 2
y (∂Py/∂z)

2 in (2.1), whereas theT - andP -dependences of the coefficientδ in (2.4) were
not taken into consideration. However, although the presentation in [12, 13] is less rigorous,
the approach is in essence close to the one presented in this paper and in [9] for the case
whereEy = 0.

5. Boundaries between different phases

We now obtain expressions for the boundaries between the different phases by equating
the thermodynamic potentials for these phases. We construct a phase diagram in the plane
δ/2κ, (α0−α)/κ, choosing these variables as coordinate axes. It is convenient to introduce
the dimensionless variables

D ≡ δ

2κ
A ≡ α0− α

κ
Al ≡ κ

2β

( |α′2l|
κ

)1/(l−1)

. (5.1)

The variablesD andA have already been mentioned. We emphasize that each Cm/l phase
is characterized by only one dimensionless parameterAl depending on the magnitude of
the coefficientα′2l .

The C–IC boundary, as follows from (4.2) and (4.3), has the form

A = 0. (5.2)

For the C–C0/1 boundary we obtain from (4.3) the expression(D < 0)

A = D2. (5.3)

The IC–C0/1 boundary, as follows from (4.2) and (4.3), has the form

A = cD2 c ≡ (1−
√

2/3)−1 ≈ 5.45. (5.4)

These three boundaries, equations (5.2)–(5.4), intersect at a single point, which is called the
Lifshitz point (the L point) [7]. Its coordinates are

A = 0 D = 0. (5.5)

For the IC–Cm/l boundary we obtain from (4.2) and (4.6) the expression

A = 1

Al
(D − q2

m/l)
2/(l−1) or D = q2

m/l ± (AlA)(l−1)/2. (5.6)

The condition (4.7) for weak anisotropy is reduced using (5.6) to the form

(AlA)
l−1A−1� 1. (5.7)

It is obvious from (5.6), and also from (5.7), that the greater 1/l andAl are, the wider the
area of existence of the Cm/l phase is in theD–A diagram.

For the Cm/l–Cm′/l′ boundaries we obtain from (4.6) under condition (5.7) the expression

(D − q2
m/l)

2− (AlA)l−1 = (D − qm′/l′)2− (Al′A)l′−1 (5.8)

which can be rearranged to give an expression forD:

D = (1/2)(q2
m/l + q2

m′/l′)− (1/2)(q2
m/l − q2

m′/l′)
−1[(AlA)

l−1− (Al′A)l′−1]. (5.9)
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Figure 2. TheD–A phase diagram.

Note that the boundaries IC–Cm/l , IC–Cm′/l′ , equation (5.6), and Cm/l–Cm′/l′ , equation (5.8),
intersect at a single point, as they should.

For the C0/1–Cm/l boundary we obtain from (4.3) and (4.6) under condition (5.7) the
expression

A = cD2− (c − 1)[(D − q2
m/l)

2− (AlA)l−1] (5.10)

which can be rearranged to give an expression forD. Usually this boundary differs slightly
from the IC–C0/1 boundary; see (5.4). The boundaries IC–C0/1, equation (5.4), IC–Cm/l ,
equation (5.6), and C0/1–Cm/l , equation (5.10), intersect at a single point. This is also the
case for the boundaries Cm/l–Cm′/l′ , equation (5.8), C0/1–Cm/l , equation (5.10), and C0/1–
Cm′/l′ , equation (5.10). The intersection of these boundaries and also of those mentioned
above at a single point confirms the fact that none of the expressions for the boundaries
contain terms which are beyond the accuracy of the approach determined by condition (5.7).

6. Phase diagrams

In order to construct theD–A diagram for BCCD, we must choose values of the parameters
Al for each Cm/l phase. In practice, such a choice must be realized via a best fit of the
theoreticalT –P diagram, as obtained from theD–A diagram, to the experimentalT –P
diagram shown in figure 1. We choose the following values of the parameters†:

A3 = 10 A4 = 30 A5 = 40 A6 = A7 = A8 = 50

A7 = A9 = 80 A11 = A13 = 100
(6.1)

for the Cm/l phases withqm/l = m/l = 1/3, 1/4, 1/5, 1/6, 1/7, 1/8; 2/7, 2/9, 2/11, 2/13,
respectively (other Cm/l phases are omitted from our consideration). Even with such a crude

† A7 occurs twice, since there exist two phases withl = 7.
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choice ofAl-values (with accuracy only up to the first digit), we obtain a rather satisfying
agreement between the theoretical and experimentalT –P diagrams (see below).

Figure 2 shows theD–A phase diagram constructed according to the expressions (5.1)–
(5.10) and (6.1). The Cm/l phases are hatched in figure 2 and labelled with their ratiosm/l.
L denotes the L point with its coordinates given by (5.5). Note thatAl-values different from
those in (6.1) were chosen, and the correspondingD–A diagram was constructed in [15]
in order to explain the sequence of C, IC, and Cm/l phases in the experimentalT -diagram
given in [14].

The two coefficientsα and δ of the thermodynamic potentials are anomalously small,
and hence their dependence onT and P is crucial. The remaining coefficientsβ, κ, α′2l
have, generally speaking, a normal magnitude, i.e. they can be considered as constants,
independent ofT andP (and, for the same reasons, independent ofq). We assume thatα
and δ and henceA andD (see (4.1) and (5.1)) depend linearly onT andP . This means
that the axesT andP in figure 2 are straight lines. Their position, orientation, and scale
are determined from the best fit to the experimentalT –P diagram.

Figure 3. The theoreticalT –P phase diagram for BCCD. The Cm/l phases withm/l =
2/7, 1/4, 1/5, 1/6, and 1/7 are hatched as in figure 2; L labels the L point.

The orientation of theT -axis in theD–A diagram in figure 2 is chosen in such a way
that the Cm/l phases intersected by theT -axis are the same and have approximately the same
widths as in figure 1 (atP = 0). The scale of theT -axis in figure 2 is chosen in such a way
that we obtain the correct temperature interval between the C–IC and C0/1–C1/6 transitions,
as given in figure 1. The orientation and scale of theP -axis has been chosen accordingly.
Using these choices for theT - andP -axes, we replot theD–A diagram of figure 2 in the
T , P -plane. The resulting theoreticalT –P phase diagram is shown in figure 3.

By comparing figure 3 with figure 1 we see that the theoretical and experimentalT –P
phase diagrams agree sufficiently well. This agreement can be improved by making a more
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suitable selection ofAl-values, or by achieving a more precise orientation of theT - and
P -axes in theD–A phase diagram. We shall not follow this procedure in this study, partly
because of some scatter in the experimental data (see, e.g., tables given in [12] and in [14]).
In general, the coefficients of the thermodynamic potentials can be determined from such
fitting procedures.

7. Conclusions

In conclusion, we have returned to discussing the approximations and assumptions which
were made when constructing the theoreticalD–A andT –P phase diagrams. The single-
harmonic approximation was used for the IC phase. This leads to insignificant errors when
determining the boundaries between the IC and Cm/l phases.

A weak-anisotropy condition was used for the Cm/l phases, thus allowing us to obtain
explicit expressions for the potentials and hence for the boundaries of the Cm/l phases.
However, for smalll and in regions of largeA-values in theD–A diagram, this condition
is not well satisfied.

The variablesD andA were assumed to be linearly dependent onT andP , while the
Al were assumed to be constant. However, these assumptions are less well fulfilled for
wide T - andP -intervals.

The approximations and assumptions given above and used to construct theoretical
phase diagrams did not prevent us from obtaining a fairly good agreement between the
theoretical and experimentalT –P phase diagrams for BCCD. This demonstrates that the
phenomenological approach to structural phase transitions, which was always well justified,
also happens to be an adequate description in cases of complicated phase diagrams, where,
in addition to the initial phase, the incommensurate and a large number of commensurate
phases occur.
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[2] Schaack G 1990Ferroelectrics104 147
[3] le Maire M, Lingg G, Schaack G, Schmitt-Lewen M and Strauß G 1992Ferroelectrics125 87
[4] Illing M, Schaack G and Schmitt-Lewen M 1994Ferroelectrics155 341
[5] Kityk A V, Soprunyuk V P, Vlokh O G, Sveleba S A and Czapla Z 1993J. Phys.: Condens. Matter5 7415
[6] Chaves M R, Kiat J M, Schwarz W, Schneck J, Almeida A, Klöpperpieper A, M̈user H E and Albers J 1993
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Kl öpperpieper A and Albers J 1995Phys. Status Solidib 189 97
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